DEOM, bp 92-96 °C (11 mm) [lit.⁷ bp 106-108 °C (17 mm)]. The yield, based on diethyl malonate, is **180-205** g **(41-47%).**

Acknowledgment. We thank the National Science Foundation for financial support.

Registry No. 1, **60308-73-8; diethyl malonate, 105-53-3; diethyl oxomdonate, 609-09-6.**

Thermal Decomposition of Benzyl α -Disulfone: The Question **of** Rate-Determining Homolysis **of** More Than One Bond in the Thermal Decomposition of an α -Disulfone

Lieh-pao 0. Farng and John L. Kice*

Department of Chemistry, Texas Tech University, Lubbock, Texas 79409

Received January 14, 1980

Aryl α -disulfones, ArSO₂SO₂Ar (1), have been shown¹ to undergo thermal decomposition at elevated temperatures (145-165 °C) by a mechanism that involves ratedetermining homolysis of the s-S bond (eq l). The

 \sim \sim

$$
Arg\leftarrow\text{SAP} \rightarrow \text{2ArSO}_2
$$
 (1)

 $ArSO₂$ radicals formed in eq 1 then react further in a variety of ways to yield the final decomposition products. Only a few lose sulfur dioxide, however, since only ~ 0.2 mol of *SO2* is produced per mole of **1** decomposing.

During a study of nucleophilic substitution of alkyl α -disulfones reported elsewhere 2 we had occasion to synthesize benzyl α -disulfone, $\mathrm{PhCH_2SO_2SO_2CH_2Ph}$ (2). The present note describes a study of the thermal decomposition of **2** and presents evidence suggestive that the rate-determining step of this reaction may involve the homolysis of *two* bonds, rather than cleavage of only the S-S bond.

Thermal decomposition of **2** was achieved by heating a deaerated solution of the α -disulfone (0.04 M) in bromobenzene at 138 "C for 6 h. A slow stream of nitrogen was passed through the solution throughout the decomposition in order to sweep out sulfur dioxide **as** it was formed, and the large amount of sulfur dioxide liberated (1.6 mmol/ mmol of **2)** was determined by passing the exit gas stream through a trap containing standard iodine solution and measuring the amount of **I2** remaining at the end of the decomposition. Chromatography **of** the nonvolatile residue remaining after in vacuo removal of the bromobenzene solvent gave bibenzyl(O.41 mmol/mmol **of 2)** and dibenzyl sulfone (0.12 mmol/mmol of **2)** as identifiable products.

The kinetics of the thermal decomposition of **2** in bromobenzene was followed by monitoring the rate of evolution of sulfur dioxide by using a technique (see Experimental Section) that has proved reliable in the past³ for following the kinetics of decompositions where significant quantities of SO_2 are liberated. Plots of log $(1 - SO_2/SO_{2\omega})$ **vs.** time were nicely linear, showing that the thermal **de**composition of **2** exhibits first-order kinetics. Their slope, the experimental first-order rate constant (k_1) , was independent of initial concentration of **2.** The results of the various kinetic runs are summarized in Table I. The dependence of k_1 on temperature indicates that $\Delta H^* = 37.8$ kcal/mol and $\Delta S^* = +17.3$ eu.

The clean first-order kinetics for the thermal decomposition of **2** is consistent with the rate-determining step of that decomposition being a unimolecular reaction of the α -disulfone. The large positive ΔS^* suggests this unimolecular reaction is a homolytic dissociation of **2. A** heterolytic dissociation $(2 \rightarrow PhCH_2^+ C_2SSO_2CH_2Ph)$ would certainly not be expected to have a large positive ΔS^* in a nonpolar solvent like bromobenzene,⁴ and neither would a concerted rearrangement. The formation of sizeable amounts of bibenzyl indicates that benzyl radicals are produced during the decomposition of **2,** either directly or by loss of sulfur dioxide from $PhCH_2SO_2$. It thus appears that the thermal decomposition of **2,** like that' of aryl α -disulfones (1), is a free-radical reaction involving ratedetermining homolytic dissociation of the α -disulfone.

Comparison of the kinetic data for **2** in Table I with similar data' for the decomposition of **1** indicates that **2** decomposes about 50 times faster than 1 and that ΔH^* for **2** (37.8 kcal/mol) is 3 kcal/mol less than that for **1** (41 kcal/mol). The much faster rate, and lower ΔH^* , for the thermal decomposition of **2** as compared to 1 brings to mind the rate behavior of the decompositions of tert-butyl peresters, $RC(O)OOBu-t$ ⁶ In the homolysis of such peresters those, like PhCH,C(O)OOBu-t, where R, **as** R-, is a resonance-stabilized radical decompose by a mechanism (eq **2)** where there is concerted cleavage of *both* the R-C(O) and *0-0* bonds in the rate-determining step, while those, like $CH_3C(0)OOBu-t$ or $PhC(0)OOBu-t$, where Rwould not be resonance-stabilized decompose considerably more slowly by a mechanism (eq 3) in which *only* the *0-0* bond is cleaved in the rate-determining step.⁶

$$
\text{PhCH}_{2}CO_{2}OBu-t \xrightarrow{\text{rate}} [\text{PhCH}_{2} \cdots CO_{2} \cdots OBu-t] \rightarrow \text{PhCH}_{2} + CO_{2} + t \cdot BuO \cdot (2)
$$
\n
$$
\text{PhCO}_{2}OBu-t \xrightarrow{\text{rate}} [\text{PhCO}_{2} \cdots OBu-t] \rightarrow \text{PhCO}_{2} + \cdot OBu-t \quad (3)
$$

The concerted mechanism has a significantly lower ΔH^* than the mechanism where only the *0-0* bond is cleaved in the rate-determining step. However, ΔS^* for the concerted mechanism is less positive than ΔS^* for eq 3, and this partially offsets the rate acceleration provided by the lower ΔH^* . Bartlett and Hiatt⁶ suggested that the reason ΔS^* is less positive is because the concerted mechanism requires restrictions to rotation about certain bonds in the transition state that are not required when only the *0-0* bond is being cleaved in the rate-determining step. Pryor and Smith' have subsequently pointed out that, while the insights of Bartlett and Hiatt⁶ are useful when treated as qualitative trends, one should not attempt to use relationships between ΔH^* and ΔS^* for perester and other peroxide homolyses to assign the *exact* number of bonds undergoing cleavage, or the number about which rotation is restricted, in the rate-determining transition state.

To gain further insight into whether concerted homolysis of more than one bond in the rate-determining step could

⁽¹⁾ Kice, J. L.; Favstritsky, N. J. Org. Chem. 1970, 35, 114.

(2) Farng, L.-P. O.; Kice, J. L. J. Am. Chem. Soc. 1981, 103, 1137.

(3) (a) Kice, J. L.; Parham, F. M.; Simons, R. M. J. Am. Chem. Soc.

1960, 82, 834. (b) Ki **Gabrielsen, R.** S. *Zbid.* **1970,35, 1004,1010.**

⁽⁴⁾ In 90% dioxane reactions of the type $\overline{RX} \rightarrow \overline{R^+X^-}$ generally have entropies of activation of the order of -20 eu;⁵ ΔS^* for a process of this

type should be *at least* this negative in bromobenzene.
(5) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1597,
1602, 5937. Winstein, S.; Fainberg, A. H.; Grunwald E. Ibid. 1957, 79,

^{4146.} (6) Bartlett, P. D.; Hiatt, R. R. *J. Am. Chern.* **SOC. 1958,** *80,* **1398. (7) Pryor, W. A,; Smith, K.** *Znt. J. Chem. Kinet.* **1971,3, 387.**

Table I. Kinetics of Thermal Decomposition of α -Disulfones in Bromobenzene

α -disulfone	temp, °C	$[(RSO2)2]0$, M	$k_1 \times 10^4$, s ⁻¹	ΔH^{\ddagger} , kcal/mol	ΔS^{\ddagger} , eu	
$(PhCH, SO2)$, 2	137.7	0.02	3.8			
		0.01	3.6	37.8	$+17.3$	
	127.3	0.01	1.12 ± 0.01			
	116.7	0.01	0.28 ± 0.01			
(PhCH, CH, CH, SO,), 3	143.9	0.01	0.84 ± 0.02			
	133.8	0.01	0.22	42.3	$+23.4$	
	133.5	0.01	0.21			
	127.1	0.01	0.090 ± 0.003			
$(CH_3SO_2)_2$	137.7	0.01	0.10			

be responsible for the faster rate of decomposition of **2** the kinetics of the thermal decompositions of 3-phenylpropyl α -disulfone, (PhCH₂CH₂CH₂SO₂)₂, 3, and methyl α -disulfone were examined. In contrast to **2,** cleavage of a $C-SO₂$ bond in either of these α -disulfones will not yield a reasonance-stabilized radical. The decompositions of **3** and $\text{MeSO}_2\text{SO}_2\text{Me}$ lead to the liberation of only about half as much $(\sim 0.9 \text{ mmol/mmol of } \alpha\text{-disulfone})$ sulfur dioxide as in the decomposition of 2, but plots of $log(1 - SO_2)$ $SO_{2\infty}$) vs. time are still nicely linear. Rate constants for the thermal decomposition of **3** at several temperatures are given in Table I; from them $\Delta H^* = 42.3 \text{ kcal/mol}$ and ΔS^* = +23.4 eu for the decomposition of 3. The rate of decomposition of methyl α -disulfone, obtained at one temperature only, is also given in Table I.

Comparison with the kinetic data for **2** shows that **3** decomposes 12 times and methyl α -disulfone decomposes 35 times *slower* than 2. The ΔH^* for the decomposition of 3 is 4.5 kcal/mol greater than that for 2, while ΔS^* for **3** is 6 eu more positive. The difference in ΔS^* causes the difference in the rates of decomposition of **2** and **3** to be **20 times** smaller than would be the case if the relative rates were determined by $\Delta(\Delta H^*)$ alone.

One sees that in the decomposition of α -disulfones RSO_2SO_2R a change from an R group (PhCH₂CH₂CH₂) where \mathbb{R}^1 is not a resonance-stabilized radical to one (PhCH₂) where it is produces changes in rate, ΔH^* , and ΔS^* which all parallel those seen in the perester decomposition on going from $CH_3C(0)OOBu-t$ to $PhCH_2C(0)$ -OOBu-t. Although the decrease in ΔH^* on going to R = PhCH₂ in the α -disulfone decomposition is not as large as that in the perester decomposition, 8 it is still substantial.

While the rate, ΔH^* , and ΔS^* for the decomposition of **2** as compared to **3** can hardly be said, given the caveat of Pryor and Smith, $\frac{7}{1}$ to provide conclusive evidence for rate-determining homolysis of more than one bond in the decomposition of **2,** they are suggestive that the decomposition of **2** takes place by a mechanism (eq **4)** in which both a $PhCH_2-SO_2$ and the S-S bond are cleaved in a concerted fashion in the rate-determining step, in contrast

to the decomposition of 3 (eq 5), or 1 (eq 1), where only
\n
$$
\frac{\text{rate}}{2} \cdot \frac{\text{rate}}{\text{determining}} \cdot [\text{PhCH}_{2} \cdots \text{SO}_{2} \cdots \text{O}_{2} \text{SCH}_{2} \text{Ph}] \rightarrow \text{PhCH}_{2} + \text{SO}_{2} + \text{PhCH}_{2} \text{SO}_{2}.
$$
 (4)

$$
\begin{array}{ll}\n[\text{Ph}(\text{CH}_2)_3\text{SO}_2]_2 \xrightarrow{\text{rate}} \\
3 & [\text{Ph}(\text{CH}_2)_3\text{SO}_2\cdots\text{O}_2\text{S}(\text{CH}_2)_3\text{Ph}] \rightarrow 2\text{Ph}(\text{CH}_2)_3\text{SO}_2. \tag{5}\n\end{array}
$$

the *S-S* bond undergoes homolysis in the rate-determining step. In order for the phenyl group to be able to stabilize mesomerically the developing $PhCH_{2}$ radical rotation about the $Ph-CH_2$ bond must be restricted in the transition state for eq 4; this could cause ΔS^* for 2 to be less positive than ΔS^{\dagger} for 3.

The formation of some dibenzyl sulfone in the decomposition of 2 shows that some combination of PhCH₂· and $PhCH₂SO₂$ radicals occurs. Given the relatively rapid rate expected for $PhCH_2SO_2 \rightarrow PhCH_{2}+ SO_2$, this sulfone is probably formed by cage recombination of initially formed $[PhCH₂ \cdot O_2SCH₂Ph]$ radical pairs. Any $PhCH₂SO₂$ radicals that escape the initial solvent cage would almost certainly lose sulfur dioxide before encountering a benzyl radical in the bulk solution. The isolation of a product arising from a reaction involving PhCH₂SO₂. radicals shows that no more than two bonds in **2** undergo homolysis in the rate-determining step.

If eq **4** is the correct explanation for the faster rate and lower ΔH^* for the decomposition of 2, α -disulfones with an R group that yields a more resonance-stabilized radical than PhCH2. should decompose even faster than **2** and than PhCH₂ should decompose even faster than 2 and with a lower ΔH^* . We attempted to synthesize such an α -disulfone, Ph₂CHSO₂SO₂CH₂Ph, from the known^{3a} thiosulfonate $Ph_2CHSO_2SCH_2Ph$, using the same type of oxidation procedure that is successful2 in converting PhCH₂SO₂SCH₂Ph to 2. However, when applied to $Ph_2CHSO_2SCH_2Ph$ the oxidation failed to yield the desired α -disulfone; there was obtained instead a considerable amount of benzyl benzhydryl sulfone, $Ph_2CHSO_2CH_2Ph$, together with a number of unidentified products.

Experimental Section

Benzyl α -Disulfone (2). This compound and methyl α -disulfone were synthesized as described in an earlier paper.²

3-Phenylpropyl α -Disulfone (3). 1-Bromo-3-phenylpropane (20 g, 0.1 mol) was converted to the corresponding Grignard reagent, and the ether solution of the Grignard reagent waa added to a solution of sulfur dioxide (30 **mL,** 0.69 mol) in 100 **mL** of ether at -78 "C. The resulting mixture was stirred for 30 min and then allowed to warm to room temperature. All volatile material was then removed by passing a stream of dry nitrogen through the mixture. This left a yellowish solid, the crude sulfinate salt $Ph(CH₂)₃SO₂MgBr.$ This was immediately dissolved in 80 mL of aqueous ammonium chloride, and the resulting solution was then acidified to pH 4 by the addition of cold *50%* sulfuric acid. The acidified solution was extracted twice with 150-mL portions of ether. The combined ether extracts were dried **(MgSO,)** and the ether was removed under reduced pressure to give a residue of crude **3-phenylpropane-1-sulfinic** acid as a slightly yellowish liquid. This was dissolved in a small amount of water and then neutralized by titration with standard 1 N sodium hydroxide. After titration the solution was extracted with ether to remove traces of organic impurities. The water was then removed, leaving sodium **3-phenylpropane-1-sulfiiate** (10.5 g, 51%) **as** a white solid. The procedure for sulfination of the Grignard reagent is that used successfully by Pinnick and Reynolds¹¹ to synthesize other alkanesulfinates.

⁽⁸⁾ The presently accepted values for ΔH^* for the decompositions of $CH_3C(O)OOBu-t^9$ (34.3 kcal/mol) and PhCH₂C(O)OOBu- $t^{9,10}$ (28.1 kcal/mol) are somewhat different than those used by Bartlett and Hiatt.⁶ These values suggest that $\Delta(\Delta H^*)$ on going to PhCH₂C(O)OOBu-t is -6 kcal/mol, not **too** much larger than the **-4.5** kcal/mol for the change from 3 to **2** in the a-disulfone decomposition.

⁽⁹⁾ Huyser, E. S. "Free Radical Chain Reactions"; John Wiley & Sons:

New York, **1970;** pp **278,287. (10)** Bartlett, P. D.; Simons, D. M. *J. Am. Chern. SOC.* **1960,82,1753.**

⁽¹¹⁾ Pinnick, H. W.; Reynolds, M. A. *J. Org. Chern.* **1979,** *44,* **160.**

Sodium 3-phenylpropane-1-sulfinate was oxidized to 2 with an acidic solution of cobaltic sulfate, **using** the general procedure for conversion of *n*-alkanesulfinates to α -disulfones developed by Denzer **et** al.12 The crude product was recrystallized from benzene-ethanol, giving pure 3-phenylpropyl a-disulfone **(19%):** mp **114-116** "C; IR (KBr) **1113** and **1345** cm-I (SO,); **NMR** (CDClJ 6 **2.31** (quintet, **2 H), 2.82** (t, **2 H), 3.42** (t, **2 H), 7.10-7.46** (m, 5 H). Anal. Calcd for C₁₈H₂₂O₄S₂: C, 58.99; H, 6.05; S, 17.50. Found: C, **59.10;** H, **6.04; S, 17.56.**

Procedure for Kinetic Runs. The apparatus used for the kinetic runs was of a design previously described^{3a} and shown to be effective for following the progress of reactions that evolve substantial amounts of sulfur dioxide. The desired amounts of α -disulfone and purified bromobenzene were placed in the reaction flask and deaerated by passing a slow stream of dry nitrogen through the solution for **1** h at room temperature, after which the reaction vessel was placed in a constant-temperature bath to initiate decomposition. A stream of nitrogen was passed through the solution during the decomposition to sweep out **sulfur** dioxide **as** it was formed. The nitrogen stream **was** subsequently passed through a trap containing standard iodine solution where the sulfur dioxide was absorbed, and the rate of evolution of sulfur dioxide was followed in the manner outlined by Kice, Parham, and Simons.^{3a}

Products of Decomposition of **2.** Benzyl a-disulfone **(0.62** g, **2** mmol) was decomposed in 50 mL of bromobenzene at **138**

"C, using the same apparatus and means of estimating the amount of sulfur dioxide produced **(1.6** mmol/mmol of **2) aa** in the kinetic runs. After decomposition **was** complete the bromobenzene was removed under reduced pressure at **90** "C. The residue was chromatographed on **silica** gel, using successively hexane, various hexane-benzene mixtures, benzene, benzene-ether, ether, ether-methanol, and finally methanol as eluents. Elution with hexane afforded a white solid which **was** recrystalked from ethanol, **giving 0.150** g **(0.82** mmol) of bibenzyl, mp **50-53** "C (litla mp **52-53** "C), identical in all respects with a known sample. Elution with **1:l** benzene-ether gave a fraction, also recrystallized from ethanol, that was dibenzyl sulfone (0.06 g, 0.24 mmol), mp 146-148 °C (lit.¹⁴ mp **151-152** "C), identical with an authentic sample. There was also a small fraction eluted with methanol that waa not identified, although the presence of strong absorption in the infrared at **1180-1220** and **1050** cm-' suggested that it was either the hydrate of a sulfonic acid or a sulfonate salt.

Acknowledgment. The support of this research by the Robert A. Welch Foundation (Grant **D-650)** is gratefully acknowledged.

Registry **No.** 2, **76625-87-1; 3, 77357-66-5;** 1-bromo-3-phenylpropane, **637-59-2; 3-phenylpropylsulfinyloxpagnesium** bromide, **77357-67-6; 3-phenylpropane-l-suKnic** acid, **70385-57-8;** sodium **3 phenylpropanol-1-sulfinate, 77357-68-7; sulfur** dioxide, **7446-09-5; (CHpSOz)z, 10383-49-0.**

L'ommuntcattons

Reductive Cyclization of Keto Acids to Polycyclic Aromatic Hydrocarbons by Hydroiodic Acid-Red Phosphorus

Summary: Hydroiodic acid-red phosphorus in acetic acid causes ring closure of o-naphthoylbenzoic acids and of o -naphthoylnaphthoic acids to yield benz[a]anthracene and dibenzanthracenes.

Sir: Although hydroiodic acid-red phosphorus (HI/P) was introduced as a reagent into organic chemistry over a century ago' it has been only sporadically used in the past. Examples of its use are hydrogenations, l deoxygenations of alcohols,² ketones,³ keto acids,³ and quinones,⁴ cleavage of phenol ethers, 5 and reductive cleavage of lactones. 6

A recent report⁴ on the reductive cyclization of $2-(9$ phenanthroy1)benzoic acid in the presence of HI/P to dibenz[a,c]anthracene ascribes the ease of cyclization in this special case to the relatively high olefinic character of the phenanthrene 9,lO bond.

We have found that reductive cyclization with HI/P *can* quite generally be applied to o-naphthoylbenzoic acids and to o-naphthoylnaphthoic acids. The use of HI/P therefore provides a simple high-yield route to $benz[a]$ anthracene, dibenz $[a,h]$ anthracene, and dibenz $[a,j]$ anthracene as well as to their hydroxylated derivatives (Table I).

The keto acids **1-6** were prepared in 70-80% yield by the addition of the Grignard reagent from a suitable **aro**matic bromo compound to an aromatic 1,2-dicarboxylic acid anhydride **as** described by LaBudde and Heidelberger,¹⁴ modified according to Braun.¹⁵

The classic way to transform these keto acids to the corresponding polycyclic aromatic hydrocarbons consists of Friedel-Crafts cyclization with sulfuric acid or polyphosphoric acid to the quinones and reduction with **alu**minum tricyclohexoxide¹⁶ or zinc/pyridine/acetic acid¹⁷ to polycyclic aromatic hydrocarbons. **Both steps,** especially the cyclization of **4-6,** afford low yields.14

Reductive cyclization with HI/P is therefore a very convenient method to overcome the disadvantages of the classic synthesis of dibenzanthracenes.

- **(12) Clm, E.** *Chem. Ber.* **1929,62, 350. (13) Cook, J. W.** *J. Chem. SOC.* **1932,1472.**
- **(14) LaBudde, J. A,; Heidelberger, C.** *J. Am. Chem. SOC.* **1968, 80, 1225.**
	-

(15) Braun, M. *Angew. Chem.* 1978, 90, 1000.
(16) Coffey, S.; Boyd, V. J. *Chem. Soc.* 1954, 2468.
(17) Manning, W. B.; Muschik, G. M.; Tomaszweski, J. E. J. *Org*. *Chem.* **1979,44,699.**

0022-3263/81/1946-2601\$01.25/0 *0* **1981** American Chemical Society

⁽¹²⁾ Denzer, *G.* **C., Jr.; Allen, P., Jr.; Conway, P.; van der Veen, J. M.** *J. Org. Chem.* **1966, 31, 3418.**

⁽¹³⁾ Kleiderer, E. C.; Kornfeld, E. C. *J. Org. Chem.* **1948, 13, 485. (14) Rheinboldt, H.; Giesbrecht, E.** *J. Am. Chem. SOC.* **1946,68,973.**

⁽¹⁾ Graebe, C.; Liebermann, C.; *Ann. Chem. Pharm. Suppl. VII* 1870, **257. Liebermann, C.** *Ann. Chem. Pharm.* **1871,158, 299. Schmidt, E.** *J. Rakt. Chem.* **1874,9, 241.**

⁽²⁾ Meakins, *G.* **D.; Swindells, R.** *J. Chem. SOC.* **1959,1044. Ho, T. L.; Wong, C. M.** *Synthesis* **1975, 161.**

⁽³⁾ Ansell, L. L.; Rangarajan, T.; Burgess, W. M.; Eisenbraun, E. J.
Org. Prep. Proced. Int. 1976, 8, 133.
(4) Harvey, R. G.; Leyba, C.; Konieczny, M.; Fu, P. P.; Sukumaran, K. B. J. Org. Chem. 1978, 43, 3423.

⁽⁵⁾ Guerrero, T. H.; Deulofeu, V. *Chem. Ber.* **1937, 70, 947. (6) Giebe,** *G. Chem. Ber.* **1896,29, 2533.**

⁽⁷⁾ Hemilian, W. *Chem. Ber.* **1878,Il, 837.**

⁽⁸⁾ McMullen, T. C. *J. Am. Chem. Soc.* 1**922, 44, 2**055.
(9) Fieser, L. F.; Kilmer, G. W. *J. Am. Chem. Soc.* 1**939,** 61, 862.
(10) de B. Barnett, E.; Cook, J. W.; Nixon, I. G. *J. Chem. Soc.* 1**927,**

^{504.}

⁽¹¹⁾ Fieser, L. F.; Dietz, E. M. *Chem. Ber.* **1929, 62, 1827.**